Предмет: Геометрия,
автор: nastenabazaeva
В прямоугольном треугольнике с острым углом 30 больший катет равен 18 см. На какие отрезки делит этот катет биссектриса большего острого угла треугольника ? (Дано, Найти, Решение)
nastenabazaeva:
Нужно решение
Ответы
Автор ответа:
10
Ответ:
6 и 12 см
Объяснение:
Дано: ΔАВС; ∠С=90°; ∠А=30°; АС=18 см; т.D∈AC; BD - биссектриса ∠В.
Найти СД и ДА.
Решение:
∠В (ΔАВС)=180-90-30=60°; ВД - биссектриса (по условию), значит, ∠СВД=∠АВД=30°, т.е. ΔАВД - равнобедренный с равными боковыми сторонами АД=ВД. А в прямоугольном ΔДВС сторона ВД - гипотенуза, которая равна удвоенному катету СД, который лежит против угла в 30°. Имеем: 2СД=ВД=АД, 2СД=АД, т.е. сторона АС разбита на отрезки, относящиеся как 1:2. АС=18 см, значит, СД=6 см, а АД=12 см.
Похожие вопросы
Предмет: Английский язык,
автор: Аноним
Предмет: Физика,
автор: fergusonenrik122
Предмет: Окружающий мир,
автор: derkachpolina019
Предмет: Биология,
автор: vandagallagher