Предмет: Алгебра,
автор: Anastasia150418
Доведіть, що при будь-якому натуральному n значення виразу 3^n+2 - 2^n+2 + 3^n - 2^n ділиться націло на 10
Ответы
Автор ответа:
34
3ⁿ⁺² - 2ⁿ⁺² + 3ⁿ - 2ⁿ = 3ⁿ⁺² + 3ⁿ- 2ⁿ⁺² - 2ⁿ = 3ⁿ(3² + 1) - 2ⁿ(2² + 1) = 3ⁿ·10 - 2ⁿ·5 = 3ⁿ·10 - 2ⁿ⁻¹·2·5 = 3ⁿ·10 - 2ⁿ⁻¹·10 = 10( 3ⁿ - 2ⁿ⁻¹)
Оскільки вираз 10( 3ⁿ - 2ⁿ⁻¹) ділиться націло на 10 , то і 3ⁿ⁺² - 2ⁿ⁺² + 3ⁿ - 2ⁿ також ділиться націло на 10.
Anastasia150418:
Дякую!)
Похожие вопросы
Предмет: История,
автор: safethedk
Предмет: Обществознание,
автор: pavel1233433
Предмет: Физика,
автор: irkahranovska
Предмет: Литература,
автор: Беки11
Предмет: Алгебра,
автор: ponchik36