Предмет: Математика, автор: kerosinskayak

Найдите объем шара,вписанного в конус объемом 36,если осевое сечение конуса является равносторонним треугольником.

Ответы

Автор ответа: WhatYouNeed
2

Рассмотрим осевое сечение конуса. ΔABC - равносторонний. А - вершина конуса, BC - диаметр основания конуса. В треугольник вписан круг, это осевое сечение шара.  

Пусть AH⊥BC и H∈BC. Тогда AH - высота и медина, правильного ΔABC. Поэтому H - центр основания конуса (BH=HC, середина диаметра). Значит, AH - высота конуса.

Рассмотри ΔAHC: ∠H=90°; ∠C=60°, как угол правильного треугольника; ctg C = HC/AH ⇒ HC=AH·ctg60° = AH/√3. HC - радиус конуса.

V(кон.) = \dfrac13 h·S(осн.) = \dfrac13 AH·π·HC² = \dfrac{\pi}9 AH^3

Радиус вписанного в правильный треугольник круга, равен трети от высоты. OH=AH/3. OH - радиус шара.

V(шара) =  \dfrac43 π·R³ = \dfrac43 π·OH³ = \dfrac{4\pi}{81} AH^3

V(шара) = \dfrac49 V(кон.) = \dfrac{4}9 \cdot 36 = 4² = 16

Ответ: 16.

Приложения:
Похожие вопросы
Предмет: Русский язык, автор: whitefoxplaykitsune