Предмет: Алгебра,
автор: karinaleonteva02
°•°•°•°•°•°•°•°•°•°
Приложения:
Ответы
Автор ответа:
1
а) cos(t) < 0,5
cos(t) = 0,5
t = π/3 + 2πn
t = -π/3 + 2πn = 5π/3 + 2πn
cos(t) < 0,5
t € (π/3 + 2πn ; 5π/3 + 2πn) ; n € Z
б) cos(t) >= sqrt(2)/2
cos(t) = sqrt(2)/2
t = π/4 + 2πn
t = -π/4 + 2πn
cos(t) >= sqrt(2)/2
t € [-π/4 + 2πn ; π/4 + 2πn] ; n € Z
в) sin(t) > sqrt(3)/2
sin(t) = sqrt(3)/2
t = π/3 + 2πk
t = 2π/3 + 2πk
sin(t) > sqrt(3)/2
t € (π/3 + 2πk ; 2π/3 + 2πk) ; k € Z
г) sin(t) =< -0,5
sin(t) = -0,5
t = -π/6 + 2πk
t = -5π/6 + 2πk
sin(t) =< -0,5
t € [-5π/6 + 2πk ; -π/6 + 2πk] ; k € Z
Похожие вопросы
Предмет: Физика,
автор: nastaynikitina2007
Предмет: Алгебра,
автор: elena100hhliza
Предмет: Қазақ тiлi,
автор: cerinbuviaznabakieva
Предмет: Физика,
автор: sorbutov03