Предмет: Геометрия,
автор: yerenorn
дана правильная четырехугольная пирамида с высотой 12 см объем пирамиды 4096 см^3 вычислите площадь боковой поверхности пирамиды
Ответы
Автор ответа:
2
Ответ: 1280 см²
Объяснение:
Формула объема пирамиды V=h•S/3, где S - площадь основания пирамиды, h - её высота ⇒
S=3•V/h S=3•4096/12=1024 см²
Пирамида правильная, следовательно, её основание квадрат с площадью S=a² ⇒ a=√1024=32 см
Площадь боковой поверхности правильной пирамиды равна произведению апофемы на полупериметр основания. Ѕ(бок)=МН•Р(ABCD):2
Апофему МН найдем из прямоугольного ∆ МОН, где МО - высота, ОН - половина средней линии МН в ☐АВСD. МН=АВ=32, ОН=32:2=16 см
По т.Пифагора МН=√(12²+16²)=20 см
Ѕ(бок)=20•(32•4):2=1280 см²
Приложения:
Похожие вопросы
Предмет: Математика,
автор: dollygh0st
Предмет: Экономика,
автор: svetlanakor1973
Предмет: Физкультура и спорт,
автор: Аноним
Предмет: Математика,
автор: Rusalina0
Предмет: Литература,
автор: polina20071108