Предмет: Алгебра,
автор: Alenka2304
Решите уравнение
2 sin^2 x - 3 cos x = 0
Ответы
Автор ответа:
2
Ответ: x₁,₂=±π/3+2πn.
Объяснение:
2*sin²x-3*cosx=0
2-2*cos²x-3*cosx=0 |×(-1)
2*cos²x+3*cosx-2=0
Пусть cosx=t ⇒
2t²+3t-2=0 D=25 √D=5
t₁=cosx=-2 ∉, так как |cosx|≤1.
t₂=cosx=1/2
x₁,₂=±π/3+2πn.
Похожие вопросы
Предмет: Қазақ тiлi,
автор: nurlanaulbekov
Предмет: Алгебра,
автор: lenaniki
Предмет: Математика,
автор: alekseyberkutov
Предмет: Литература,
автор: annguseleva
Предмет: Математика,
автор: Sansink