Предмет: Геометрия,
автор: Аноним
признаки равнобокой трапеции
Ответы
Автор ответа:
0
1) если углы при основании равны, то трапеция равнобокая, 2)если диагонали трапеции равны, то она равнобокая,
Автор ответа:
0
Свойства равнобокой трапеции:
Теорема 10. Углы, прилежащие к каждому из оснований равнобокой трапеции, равны
Теорема 11. Диагонали равнобокой трапеции равны.
Если продолжить стороны равнобочной трапеции до их пересечения, то вместе с большим основанием трапеции они образуют равнобедренный треугольник
Диагонали равнобедренной трапеции точкой пересечения делятся на соответственно равные отрезки.
Признаки, выделяющие равнобокую трапецию среди всех трапеций:
Теорема 15. Если углы, прилежищие к одному из оснований трапеции, равны, то трапеция равнобокая.
Теорема 16. Если диагонали трапеции равны, то трапеция равнобокая.
Теорема 17. Если продолженные до пересечения боковые стороны трапеции образуют вместе и её большим основанием равнобедренный треугольник, то трапеция равнобокая.
Теорема 18. Если трапецию можно вписать в окружность, то она равнобокая.
Признак прямоугольной трапеции:
Теорема 19. Всякий четырехугольник, у которого только два угла при смежных вершинах прямые, является прямоугольной трапецией (очевидно, что две стороны параллельны, т.к. односторонние равны. в случае, когда три прямых угла это прямоугольник)
Теорема 20. Радиус вписанной в трапецию окружности равен половине высоты основания.
Теорема 10. Углы, прилежащие к каждому из оснований равнобокой трапеции, равны
Теорема 11. Диагонали равнобокой трапеции равны.
Если продолжить стороны равнобочной трапеции до их пересечения, то вместе с большим основанием трапеции они образуют равнобедренный треугольник
Диагонали равнобедренной трапеции точкой пересечения делятся на соответственно равные отрезки.
Признаки, выделяющие равнобокую трапецию среди всех трапеций:
Теорема 15. Если углы, прилежищие к одному из оснований трапеции, равны, то трапеция равнобокая.
Теорема 16. Если диагонали трапеции равны, то трапеция равнобокая.
Теорема 17. Если продолженные до пересечения боковые стороны трапеции образуют вместе и её большим основанием равнобедренный треугольник, то трапеция равнобокая.
Теорема 18. Если трапецию можно вписать в окружность, то она равнобокая.
Признак прямоугольной трапеции:
Теорема 19. Всякий четырехугольник, у которого только два угла при смежных вершинах прямые, является прямоугольной трапецией (очевидно, что две стороны параллельны, т.к. односторонние равны. в случае, когда три прямых угла это прямоугольник)
Теорема 20. Радиус вписанной в трапецию окружности равен половине высоты основания.
Похожие вопросы
Предмет: Химия,
автор: DASHUYLLECHKKA
Предмет: Физкультура и спорт,
автор: Аноним
Предмет: Биология,
автор: vasaryzik283
Предмет: Математика,
автор: likegil
Предмет: Алгебра,
автор: Valerrri