Предмет: Алгебра,
автор: oleci02
Решите уравнение
2-3*sin(x/2)*ctg(x/2)=sin^2(x/2)-sin^2(x/4)
99 баллов
Ответы
Автор ответа:
1
2 - 3·sin(x/2)·ctg(x/2) = sin²(x/2) - sin²(x/4)
2 - 3·cos(x/2) = sin²(x/2) - 0,5(1 - cos(x/2))
2 - 3·cos(x/2) = 1 - cos²(x/2) - 0,5 + 0,5cos(x/2)
- 3·cos(x/2) = - cos²(x/2) - 1,5 + 0,5cos(x/2)
cos²(x/2) - 3,5cos(x/2) + 1,5 = 0|·2
2cos²(x/2) - 7cos(x/2) + 3 = 0
Замена: cos(x/2) = t/2
t² - 7t + 6 = 0;
t₁ = 6; t₂ = 1.
Обратная замена:
cos(x/2) = 6/2 = 3 - не имеет решений
или
cos(x/2) = 1/2
x/2 = ±arccos(1/2) + 2πn, n∈Z;
x/2 = ±π/3 + 2πn, n∈Z;
x = ±2π/3 + 4πn, n∈Z.
Ответ: ±2π/3 + 4πn, n∈Z.
Похожие вопросы
Предмет: Кыргыз тили,
автор: osmonovamariam5
Предмет: Информатика,
автор: ggggggggqsisueg
Предмет: Алгебра,
автор: coticmr
Предмет: Математика,
автор: лера1234890
Предмет: Информатика,
автор: василий0086