Предмет: Алгебра,
автор: Qwetuo
cos7xcos4x=cos6xcos3x
Ответы
Автор ответа:
0
используя формулу cosAcosB=1/2((cos(A-B)+cos(A+B)), получаем cos7xcos4x=(cos11x+cos3x)*1/2, cos6xcos3x=(cos9x+cos3x)*1/2 и уравнение принимает вид cos11x-cos9x=0. используя формулы сложения аргументов получаем cos11x=cos(10x+x)=cos10xcosx-sin10xsinx, cos9x=cos(10x-x)=cos10xcosx+sin10xsinx. после вычитания второго из первого получаем -2sin10xsinx=0 или sin10xsinx=0. данное равенство выполняется когда или sinx=0 или sin10x=0. в обоих случаях решение х=0.
Похожие вопросы
Предмет: Русский язык,
автор: Olgaalenicheva
Предмет: Русский язык,
автор: Аноним
Предмет: Математика,
автор: alyamaconi189
Предмет: Математика,
автор: RokerXXXXX
Предмет: Математика,
автор: Аноним