Предмет: Геометрия,
автор: Dasha12345111111
Помогите пожалуйста, хотя бы бы краткое решение
Бóльшая боковая сторона прямоугольной трапеции равна 12 корень из 2 см, а острый угол — 45°. Найдите площадь трапеции, если известно, что в неё можно вписать окружность
Ответы
Автор ответа:
0
Проведем из тупого угла меньшего верхнего основания высоту, получим прямоугольный треугольник, со гипотенузой, она же и большая бок. сторона, и острым углом в 45°, значит, катеты в этом треугольнике рвны по 12, т.к. гипотенуза 12√2.
Воспользуемся свойством трапеции, в которую можно вписать окружность, тогда сумма оснований = сумме бок. сторон, но одна сторона у нас 12см, меньшее бок. сторона, она же и высота, а другая большая, равна 12√2
Площадь равна 12√2*(12+12√2)/2=12√2*(6+6√2)=(72√2+144)/см²/
Похожие вопросы
Предмет: Литература,
автор: kolesnikovaaa102
Предмет: Английский язык,
автор: burimovbogdan445
Предмет: Математика,
автор: q89527367480
Предмет: Литература,
автор: ВЕСЕЛЫЙСанс
Предмет: История,
автор: ZnANIa11111111