Предмет: Алгебра,
автор: eminesadykova
Решите уравнение(ПОЖАЛУЙСТА! завтра контрольная!!!)
4sin^2x cos^2x - sinx cosx = 0
Ответы
Автор ответа:
1
Ответ:
Объяснение:
вот
Приложения:
eminesadykova:
Большое спасибо!
Автор ответа:
1
Дано уравнение 4sin^2x cos^2x - sinx cosx = 0.
Используем свойство двойного угла: 2sinx cosx = sin(2x).
sin²(2x) - (1/2)sin(2x) = 0.
Вынесем sin(2x) за скобки:
sin(2x)(sin(2x) - (1/2)) = 0.
Приравниваем нулю оба множителя.
sin(2x) = 0,
2х = πn, n ∈ Z.
x = (π/2)*n, n∈ Z.
sin(2x) - (1/2) = 0.
sin(2x) = (1/2).
2x = ((π/6) + 2πn,
x = ((π/12) + πn, n ∈ Z.
2x = ((5π/6) + 2πn,
x = ((5π/12) + πn.
Похожие вопросы
Предмет: Русский язык,
автор: Аноним
Предмет: Математика,
автор: madinasalamova65
Предмет: Математика,
автор: nurdzanadilzade
Предмет: Обществознание,
автор: Котецкий