Предмет: Геометрия,
автор: AmiOstin
Расстояние от центра основания конуса до образующей равно 3 см. Угол между образующей и плоскостью основания равен 30° . Найдите объем конуса.
Ответы
Автор ответа:
5
Ответ:
V= (1/3)*π*6²*2√3 =24√3*π.
Объяснение:
Объем конуса равен V=(1/3)So*H, где So - площадь основания, Н - высота конуса. Расстояние от центра основания конуса до образующей равно 3 см - это высота ОP из прямого угла к образующей.
В нашем случае радиус основания конуса R=6 см (катет ОР против угла 30 градусов в треугольнике ОАР). Высота конуса Н=2√3 см (гипотенуза SO в треугольнике SOР равна Н=ОН/Sin60 = 3/(√3/2) = 2√3).
V= (1/3)*π*6²*2√3 =24√3*π.
Приложения:
AmiOstin:
В этой задаче угол между образующей и плоскостью основания равен 30°, т
Ybrfr ytn
Никак нет
Только Н=ОР/Sin60 = 3/(√3/2) = 2√3.
Похожие вопросы
Предмет: Литература,
автор: elsangejbatov22
Предмет: Математика,
автор: karinochik
Предмет: Математика,
автор: diakonovaanna230120
Предмет: Математика,
автор: денчик38