Предмет: Геометрия,
автор: xkristix
Прямые MA и MB - касательные к окружности с центром O (A и B - точки касания). Найдите периметр треугольника ABM, если угол AOB = 120, а r=8 см
Ответы
Автор ответа:
0
1) АО и ОВ - радиусы, следовательно, они равны.
АО = ОВ = 8;
угол АОВ = 120.
2) По теореме синусов: АО/ sin 30 = AB/ sin 120;
АО/ 1/2 = AB/ корень из трех пополам;
8/ 1/2 = AB/ корень из трех пополам;
АВ = 4 умножить на корень из трех пополам;
АВ = 2 корня из трех пополам.
3) Треугольник АВМ - равностронний, так как углы ВАМ, АМВ И АВМ равны 60 градусам, следовательно, АВ = АМ = ВМ = 2 корня из трех.
4) Р = 2 корня из тех умножить на 3 = 6 корней из трех.
АО = ОВ = 8;
угол АОВ = 120.
2) По теореме синусов: АО/ sin 30 = AB/ sin 120;
АО/ 1/2 = AB/ корень из трех пополам;
8/ 1/2 = AB/ корень из трех пополам;
АВ = 4 умножить на корень из трех пополам;
АВ = 2 корня из трех пополам.
3) Треугольник АВМ - равностронний, так как углы ВАМ, АМВ И АВМ равны 60 градусам, следовательно, АВ = АМ = ВМ = 2 корня из трех.
4) Р = 2 корня из тех умножить на 3 = 6 корней из трех.
Похожие вопросы
Предмет: Математика,
автор: UktamovAkbar
Предмет: Математика,
автор: ivansokolov3812
Предмет: Алгебра,
автор: timoxa666
Предмет: Математика,
автор: лена1973
Предмет: Биология,
автор: Владтмер