Предмет: Алгебра, автор: Cccaaatttt

Помогите уравнения 112❤️

Приложения:

Ответы

Автор ответа: katya7515
0

$$$$$$$$$$$$$$$$$dfgabd

Приложения:
Автор ответа: NNNLLL54
0

Так как квадратное уравнение часто даёт при решении два корня, то для решения тригоном. квадр. уравнений это создаёт дополнительные трудности для написания общего ответа. Надо смотреть, не пересекаются ли две группы решений, и в ответ записывать общие решения. Поэтому с помощью формул тригонометрии лучше от квадратов избавляться с помощью формул.

1)\; \; sin^2(\frac{3\pi}{4}-2x)=1\; \; ,\qquad \boxed {sin^2\alpha =\frac{1-cos2\alpha }{2}}\\\\\frac{1-cos(\frac{3\pi}{2}-4x)}{2}=1\; \; ,\; \; 1-cos(\frac{3\pi}{2}-4x)=2\; \; ,\\\\cos(\frac{3\pi}{2}-4x)=-1\; \; ,\; \; \; \boxed {cos(\frac{3\pi}{2}-\alpha )=-sin\alpha }\\\\-sin4x=-1\; \ ;,\; \; sin4x=1\\\\4x=\frac{\pi}{2}+2\pi n\; ,\; n\in Z\\\\x=\frac{\pi}{8}+\frac{\pi n}{2}\; ,\; n\in Z

2)\; \; cos^2(3x-\frac{\pi}{6})=\frac{3}{4}\; \; ,\qquad \boxed {cos^2\alpha =\frac{1+cos2\alpha }{2}}\\\\\frac{1+cos(6x-\frac{\pi}{3})}{2}=\frac{3}{4}\; \; ,\; \; 1+cos(6x-\frac{\pi}{3})=\frac{3}{2}\\\\cos(6x-\frac{\pi}{3})=\frac{1}{2}\\\\6x-\frac{\pi}{3}=\pm \frac{\pi }{3}+2\pi n\; ,\; n\in Z\\\\6x=\frac{\pi}{3}\pm \frac{\pi}{3}+2\pi n\; ,\; \; \underline {x=\frac{\pi}{18}\pm \frac{\pi}{18}+\frac{\pi n}{3}\; ,\; n\in Z}\\\\x=\left [ {{\frac{\pi n}{3}\; ,\; n\in Z} \atop {\frac{\pi}{9}+\frac{\pi n}{3}\; ,\; n\in Z}} \right.

3)\; \; 4cos^2(\frac{5\pi }{4}-x)=1\; \; \to \; \; 4\cdot \frac{1+cos(\frac{5\pi }{2}-2x)}{2}=1\; ,\\\\1+cos(\frac{5\pi }{2}-2x)=\frac{1}{2}\; \; ,\; \; cos(2\pi +\frac{\pi}{2}-2x)=-\frac{1}{2}\; ,\; \; cos(\frac{\pi}{2}-2x)=-\frac{1}{2}\\\\sin2x=-\frac{1}{2}\\\\2x=(-1)^{n}\cdot (-\frac{\pi}{6})+\pi n=(-1)^{n+1}\cdot \frac{\pi}{6}+\pi n\; ,\; n\in Z\\\\\underline {x=(-1)^{n+1}\frac{\pi}{12}+\frac{\pi n}{2}\; ,\; n\in Z}

4)\; \; tg^2(5x+\frac{\pi}{3})=3\; \; \; ,\; \; \; \frac{sin^2(5x+\frac{\pi}{3})}{cos^2(5x+\frac{\pi}{3})}=3\; \; ,\; \; cos(5x+\frac{\pi}{3})\ne 0\; ,\\\\sin^2(5x+\frac{\pi}{3})=3\cdot cos^2(5x+\frac{\pi}{3})\\\\sin^2(5x+\frac{\pi}{3})-3\cdot cos^2(5x+\frac{\pi}{3})=0\\\\\Big (1-cos^2(5x+\frac{\pi}{3})\Big )-3\cdot cos^2(5x+\frac{\pi}{3})=0\\\\1-4cos^2(5x+\frac{\pi}{3})=0\; \; ,\; \; \; cos^2(5x+\frac{\pi}{3})=\frac{1}{4}\; ,\\\\\frac{1+cos(10x+\frac{2\pi }{3})}{2}=\frac{1}{4}\; \; ,\; \; 1+cos(10x+\frac{2\pi }{3})=\frac{1}{2}

cos(10x+\frac{2\pi }{3})=-\frac{1}{2}\\\\10x+\frac{2\pi }{3}=\pm (\pi -arccos\frac{1}{2})+2\pi n=\pm (\pi -\frac{\pi}{3})+2\pi n=\pm \frac{2\pi }{3}+2\pi n,\\\\10x=-\frac{2\pi }{3}\pm \frac{2\pi }{3}+2\pi n\; ,\; n\in Z\\\\\underline {x=-\frac{\pi}{15}\pm \frac{\pi}{15}+\frac{\pi n}{5}\; ,\; n\in Z}\; \; \to \; \; \; x=\left [ {{-\frac{2\pi }{15}+\frac{\pi n}{5}\; ,\; n\in Z} \atop {\frac{\pi n}{5}\; ,\; n\in Z}} \right.

Похожие вопросы
Предмет: Английский язык, автор: obkakanka
Предмет: Математика, автор: ytkasaii
Предмет: Химия, автор: samoilova2705jull
Предмет: История, автор: elizavetakolob1