6)Найдите количество целых чисел, входящих в область определения функции
7)Найдите сумму всех целых решений неравенства
Ответы
6) Подкоренное выражение корня чётной степени должно быть неотрицательным, то есть ≥ 0 , но если этот корень в знаменателе, то подкоренное выражение строго > 0 .
Ответ :
Всего 5 целых чисел : - 4 ; - 3 ; - 2 ; - 1 , 0
+ - - +
___________₀_________₀___________₀__________
1 3 5
////////////////// ///////////////////////
x ∈ (1 , 3) ∪ (3 ; 5)
Всего 2 целых решения : 2 ; 4
Их сумма равна : 2 + 4 = 6
7. Соберем дроби слева и приведем их к общему знаменателю.
Получим (4-4х-х+х²-х+5)/(х-5)(1-х)>0
После приведения подобных (х²-6х+9)/(х-5)(1-х)>0, последнее неравенство эквивалентно следующему
(х-3)²*(х-5)(1-х)>0
Решаем неравенство методом интервалов.
Приравняем к нулю левую часть найдем корни х=3; х=5; х=1, которые разбивают числовую ось на промежутки (-∞;1)∪(1;3)∪(3;5)∪(5;+∞)
Устанавливаем знаки на каждом из промежутков и выбираем те интервалы, где левая часть положительна.
ЭТо объединение промежутков (1;3)∪(3;5), Целые решения неравенства - числа 2; 4. их сумма равна 6
Ответ 6
6. областью определения является все значения х, при которых квадратные корни имеет смысл, т.е. надо решить систему двух неравенств, а именно 15+3х>0,т.е. х>-5, и 2-9х≥0, откуда х≤2/9, Т.о. решением этой системы будет интервал (-5;2/9] Целых решений тут пять, а именно -4;-3;-2;-1;0
Ответ 5