Предмет: Алгебра, автор: texnoxp

найдите такое натуральное число n, при котором число 2^10-2^13+2^n есть полным квадратом.

Ответы

Автор ответа: Tanda80
1
Используя свойства степеней, выделим полный квадрат:
 {2}^{10}  -  {2}^{13}  +  {2}^{n}  =  \\  =  {( {2}^{5}) }^{2}  - 2 \times  { {2}^{5} } \times   {2}^{7}  +  {( {2}^{7} )}^{2}  =  \\  =  {2}^{10}  -  {2}^{13}  +  {2}^{14}
Таким образом, n=14
Похожие вопросы