Предмет: Алгебра, автор: mishakok266

Любое натуральное число, оканчивающееся цифрой 5, можно записать в виде 10а + 5. Докажите, что для вычисления квадрата такого числа можно к произведению а (а + 1) приписать справа 25. Например, 252 = 625, т. к. 2 ∙ 3 = 6. С помощью доказанного способа вычисления возведите в квадрат числа: 35, 115.


mishakok266: Помогите пожалуйста

Ответы

Автор ответа: olavrenuk3
1

Если a> 0 и а целое число то 10а + 5 заканчивается цифрой 5, потому что 10а заканчиваться цифрой 0, а при добавлении 5 это число будет заканчиваться на 5.


mishakok266: С помощью доказанного способа вычисления возведите в квадрат числа: 35, 115.
olavrenuk3: Ето уже не ко мне
Автор ответа: zinaidazina
1

№1

35² = ?

1) 3·4= 12

2) К 12 припишем справа 25

3) Получим: 35² = 1225

№2

115² = ?

1) 11 · 12= 132

2) К 132 припишем справа 25

3) Получим: 115² = 13225

Похожие вопросы
Предмет: Математика, автор: lazebnayaafeliya