Предмет: Геометрия,
автор: Аноним
Задача по геометрии:
Вне окружности с центром в точке О лежит точка К. Через неё проведены прямые МК и NК таким образом, что точки М и К лежат на окружности. МК равен 15, угол МКО равен 30 градусов. Найти МN?
ПОЖАЛУЙСТА МОЖНО с риссунком с дано найти решением что бы всё было оформлено хорошо
Ответы
Автор ответа:
15
тоже 15, т.к. ΔМКN равносторонний. ДОкажем это. МК=TК, как отрезки, проведенные из одной точки до точек касания к одной окружности. Но тогда в равнобедренном ΔМКN МN - основание. Пусть точка T - точка пересечения МN и ОК. тогда TК будет медианой, т.к. по общему катету TК и гипотенузам МК и NК треугольники МКT и NКT равны, значит, МT = NT, раз TК медиана, то она и биссектриса, т.к. проведена к основанию в равнобедренном треугольнике. Тогда ∠МКN=60°, и треугольник равносторонний, т.к. все углы по 60°. Ведь ∠ М=∠N, как углы при основании. Поэтому все стороны равны.
Ответ. 15
Аноним:
Нарисуй окружность, проведи две касательные к ней в точках МК и NК, М и К - точки касания.
Похожие вопросы
Предмет: Математика,
автор: ProstoChellllll
Предмет: Математика,
автор: misha11misha35
Предмет: Математика,
автор: blazelivep
Предмет: Геометрия,
автор: tutulovivan
Предмет: География,
автор: timlup