Предмет: Геометрия,
автор: Selena20001205
Основание пирамиды SABCD – параллелограмм ABCD , точки M и N – середины рёбер SC и SD соответственно. Прямые SA , BM и CN попарно перпендикулярны. Найдите объём пирамиды, если SA=a , BM=b , CN=c .
Ответы
Автор ответа:
2
O - точка пересечения диагоналей параллелограмма ABCD.
MO - средняя линия в SCA, MO=SA/2 =a/2
MO||SA => MO⊥BM, S(BMO)=BM*MO/2 =ab/4
MO - медиана, S(BMD)=2S(BMO) =ab/2
H - точка пересечения медиан в DSC, CH=2/3 CN =2/3 c
CN⊥SA => CN⊥MO, CN⊥BM => CN⊥(BMD)
CH - высота в пирамиде CBMD, V(CBMD)=S(BMD)*CH/3 =abc/9
Перпендикуляр из S к плоскости (ABC) вдовое больше перпендикуляра из M, площадь ABCD вдвое больше площади BCD, следовательно S(SABCD)=4S(CBMD) =4/9 abc
Приложения:
siestarjoki:
V(SABCD)=4V(CBMD)
Похожие вопросы
Предмет: Алгебра,
автор: nastymax08
Предмет: Биология,
автор: bisenovaaida18
Предмет: История,
автор: sashulya2570
Предмет: Математика,
автор: zsavushkina
Предмет: Математика,
автор: малышка94