Предмет: Геометрия,
автор: WildOwlXD
В Прямоугольном треугольнике BCD из точки M, лежащей на гипотенузе BC, опущен перпендикуляр MN на катет BD. Найдите синус угла B, если MN = 12, CD = 18, MC = 8.
Ответы
Автор ответа:
6
Построим MH ⊥ DC
Рассмотрим четырёхугольник NMHD: ∠N - прямой (по усл.), ∠D - прямой (по усл.), ∠H - прямой (по построению) ==> четыр. NMHD - прямоугольник
NM = DH = 12 (в прямоугольнике противоположные стороны равны)
HC = DC - DH = 18 - 12 = 6
∠BNM = ∠BDC = 90° ==> NM || DC (углы являются соответственными при NM || DC и секущей BD, а соответственные углы, образующиеся при параллельных прямых и их секущей, равны)
Рассмотрим ΔMHC и ΔBNM
∠H = ∠N = 90°
∠DCB = ∠NMB (соответственные при NM || DC секущей BC)
==> ΔMHC ~ ΔBNM по двум углам
В подобных треугольниках соответственные стороны пропорциональны
Синус - отношение противолежащего катета к гипотенузе
Ответ: sinB = 0,75.
Рассмотрим четырёхугольник NMHD: ∠N - прямой (по усл.), ∠D - прямой (по усл.), ∠H - прямой (по построению) ==> четыр. NMHD - прямоугольник
NM = DH = 12 (в прямоугольнике противоположные стороны равны)
HC = DC - DH = 18 - 12 = 6
∠BNM = ∠BDC = 90° ==> NM || DC (углы являются соответственными при NM || DC и секущей BD, а соответственные углы, образующиеся при параллельных прямых и их секущей, равны)
Рассмотрим ΔMHC и ΔBNM
∠H = ∠N = 90°
∠DCB = ∠NMB (соответственные при NM || DC секущей BC)
==> ΔMHC ~ ΔBNM по двум углам
В подобных треугольниках соответственные стороны пропорциональны
Синус - отношение противолежащего катета к гипотенузе
Ответ: sinB = 0,75.
Приложения:
WildOwlXD:
Спасибочки, можешь ответить на другие мои вопросы?
Похожие вопросы
Предмет: Математика,
автор: coco030708
Предмет: Информатика,
автор: qqqk0valen0kqqq
Предмет: Музыка,
автор: Jilia22
Предмет: Математика,
автор: детпул21
Предмет: Математика,
автор: ametova200590