Предмет: Математика, автор: ProvotorovaAnna6

зочем мотематек?

Периметр прямоугольника 60 см. Если длину увеличить на 10 см, а ширину уменьшить на 6 см, то площадь прямоугольника уменьшится на 32 см. Найти стороны прямоугольника.​

Ответы

Автор ответа: Аноним
6

Ответ:

До изменений:

а - длина, b - ширина

Р=60 см

Р=2(а+b) ⇒

a+b=30

b=30-a - ширина

S=ab=a(30-a)=30а-а² (см²)

После изменений:

S=32 (см²)

(а+10) - длина, 30-а-6=(24-а) - ширина

S=ab=(а+10)(24-а) (см²)

согласно этим данным составляем уравнение:

30а-а²-(а+10)(24-а)=32

30а-а²-(24а-а²+240-10а)=32

30а-а²-24а+а²-240+10а=32

30а-а²-24а+а²-240+10а-32=0

(-а+а²)+(30а-24а+10а)+(-240-32)=0

16а-272=0

16а=272

а=272:16

а=17 (см) - длина прямоугольника.

b=30-a=30-17=13 (cм) - ширина прямоугольника.

S=a·b=17·13=221 (см²)

Ответ. 221 см².

Похожие вопросы