Предмет: Алгебра,
автор: katiabobrik200pedn7a
Докажите что при любых значениях a трёхчлен 4а² - 12а+17 принимает положительные значения
Ответы
Автор ответа:
0
4а² - 12а+17 - возрастающая парабола, ветви которой направленны вверх
найдем координаты вершины:
x = -b/2a
x = 12/8 = 1,5
y = 4x² - 12x+17 = 4*1,5² - 12*1,5+17 = 8
Т.к вершина параболы (1.5;8) и она возрастающая, значение 4а² - 12а+17 будет положительно при любом а
Дополнительно можешь начертить график y = 4x² - 12x+17, для наглядности
Приложения:
Автор ответа:
2
Похожие вопросы
Предмет: Информатика,
автор: krakyy72
Предмет: Геометрия,
автор: vsemky
Предмет: Биология,
автор: potapovaaakKkirozka2
Предмет: География,
автор: gruzdevaoksana1
Предмет: Информатика,
автор: Dima1999823