Предмет: Геометрия,
автор: mrspozitiv
На гипотенузе AB прямоугольного треугольника АВС выбрана такая точка КБ что СК=АС. Отрезок СК пересекает биссектрису ВL, в ее середине . Найдите угол АВС.
Ответы
Автор ответа:
0
Пусть точкой пересечения СК и BK будет точка О. В треугольнике CBL точка О лежит на середине гипотенузы BL и является центром описанной окружности треугольника. Следовательно BO=CO и треугольник BCO - равнобедренный. Значит угол CBO равен углу BCO и равны B/2.
Т.к. CK=AC, то треугольник AKC - равнобедренный и угол CAK равен углу CKA и равны А. Значит угол АСК=180-(А+А)=180-2А.
Угол ACB=90 и равен сумме углов BCK+ACK, где ВСК=ВСО=В/2
В/2+180-2А=90 (А+В=90 => А=90-В)
В/2+180-2(90-В)=90
В/2+180-180+2В=90
5В/2=90
В=36°
Ответ: угол АВС=36°.
LerroyJay:
Честно говоря я так и не понял за что удалили мой ответ. И почему это угол АСО равен углу АКС, когда у нас СК=АС?
Похожие вопросы
Предмет: Физкультура и спорт,
автор: 6je3nm7p4p
Предмет: Українська мова,
автор: foxtrotport1119
Предмет: Українська мова,
автор: angelishapanchenko
Предмет: Математика,
автор: Znulka
Предмет: Биология,
автор: tyushevayulya