Предмет: Алгебра, автор: ritalsnv

із черкас до вінниці одночасно виїхали автобус і автомобіль. швидкість автомобіля була 30 км/год більшою за швидкість автобуса, тому він прибув до вінниці на 1 год 30 хв раніше. знайдіть швидкість автобуса й автомобіля, якщо відстань між містами 270 км.

Ответы

Автор ответа: sangers1959
6

Нехай швидкість автобуса - х.       1 год 30 хв=1¹/₂=3/2 год   ⇒

270/x-270/(x+30)=3/2

2*270*(x+30)-2*270x=3*x*(x+30)

540x+16200-540x=3x²+90x

3x²+90x-16200=0  |÷3

x²+30x-5400=0    D=22500       D=150

x₁=60           x₂=-90 ∉

9+30=90    ⇒

Відповідь: швидкість автобуса 60 км/год,

                 швидкість автомобіля 90 км/год.

Автор ответа: ms17373
8

Нехай x км/год - швидкість автомобіля, тоді

( x - 30) км/год - швидкість автобуса

Відстань дорівнює 270 км, одже виражаємо час:

( 270/(x - 30)) - час у дорозі автомобіля

(270/x) - час у дорозі автомобіля

За умовою автомобіль прибув до Вінниці  на 1год 30хв(1,5год) раніше,тому складемо рівняння:

270/(x-30) - 270/x = 15/10

2700x - 2700x + 81000 = 15x^2 - 450x

15x^2 - 450x - 81000 = 0

x^2 - 30x - 5400 = 0

D = 900 + 21600 = 22500 = 150^2

x1 = ( 30 + 150) /2 = 90( км/год) - швидкість автомобіля

x2 = ( 30 - 150) / 2 = - 60 - не задовольняє умову задачі

х - 30 = 90 - 30 = 60 (км/ год) - швидкість автобуса

Відповідь: 90 км/год, 60 км/год.



Похожие вопросы
Предмет: Математика, автор: АлинаКатя
Предмет: Алгебра, автор: КимВероника13