Предмет: Математика,
автор: StrikeR222
Найдите наименьшее расстояние между точками параболы y=x² и прямой y=2x-3 . В ответе укажите квадрат этого расстояния десятичной дробью.
Ответы
Автор ответа:
1
Касательная к параболе, параллельная прямой у = 2х - 3, имеет угловой коэффициент 2, что равно производной кривой у = х².
y' = 2x = 2. Отсюда находим точку, в которой касательная к параболе параллельна заданной прямой. xo = 2/2 = 1. Значение функции в этой точке равно 1² = 1.
Уравнение касательной:
у = y'(xo)*(x - xo) + yo = 2(х - 1) + 1 = 2х- 2 + 1 = 2х - 1.
Расстояние между этими прямыми и есть искомое наименьшее расстояние между точками параболы y=x² и прямой y=2x-3.
Если уравнения представить в общем виде:
2х -у - 3 = 0 и 2х - у - 1, то искомое расстояние определяется по формуле: d = |C2 - C1)/√(A² + B²) = |-3-(-1)|/√(4 + 1) = 2/√5.
Ответ: квадрат расстояния равен 4/5 = 0,8.
Похожие вопросы
Предмет: Українська мова,
автор: arbatrak
Предмет: Химия,
автор: originalnickname26
Предмет: Русский язык,
автор: 1ellya1
Предмет: Физика,
автор: Zakirov1337
Предмет: Математика,
автор: Рустик26