Предмет: Геометрия, автор: almond3124

! Срочно !
Нужно составить две задачи на подобие треугольников, 8 класс. Сама задача + Дано + Решение.
Даю 100 баллов первому, кто ответит
Заранее благодарна

Ответы

Автор ответа: Lizzie2018
20

1. Треугольники АВС и MNK подобны. ∠А = ∠М. ВС = 8, NK = 2. Площадь треугольника MNK равна 12 (ед²). Найдите площадь треугольника АВС.

- - -

Дано :

ΔАВС ~ ΔMNK.

∠А = ∠М.

ВС = 8.

NK = 2.

S(ΔMNK) = 12 (ед²).

Найти :

S(ΔABC) = ?

Решение :

  • В подобных треугольниках против равных углов лежат сходственные стороны.

Отсюда стороны ВС и NK - сходственные.

  • Отношение сходственных сторон равно коэффициенту подобия.

То есть -

\frac{BC}{NK} = k\\\\\frac{8}{2} = k\\\\ \boxed{k = 4}

Но прошу заметить, ища коэффициент подобия, я ставила в числитель элемент бóльшего треугольника. Поэтому при дальнейших расчётах, я буду также ставить элементы/площадь бóльшего треугольника в числитель.

  • Площади подобных треугольников относятся как квадрат коэффициента подобия.

Отсюда -

\frac{S(\triangle ABC) }{S(\triangle MNK)} = k^{2} \\\\\frac{S(\triangle ABC) }{12} = 4^{2} \\\\\frac{S(\triangle ABC) }{12} =16\\\\S(\triangle ABC)=16*12=192\\

Ответ :

192 (ед²).

- - -

2. В треугольнике АВС отрезок MК (М ∈ АВ, К ∈ ВС) параллелен АС. МК = 14, АС = 42. Периметр треугольника МВК равен 32. Найдите периметр треугольника АВС.

- - -

Дано :

ΔАВС.

М ∈ АВ, К ∈ ВС.

МК ║АС.

МК = 14.

АС = 42.

Р(ΔМВК) = 32.

Найти :

Р(ΔАВС) = ?

Решение :

  • В треугольнике параллельный одной из сторон треугольника отрезок, пересекающий две другие стороны треугольника в точках, отсекает от данного треугольника подобный треугольник.

Отсюда -

ΔАВС ~ ΔMBK.

  • В подобных треугольниках против равных углов лежат сходственные стороны. И их же отношение равно коэффициенту подобия.

∠В - общий для ΔАВС и ΔMBK.

Отсюда стороны МК и АС - сходственные.

Тогда -

\frac{AC}{MK} = k\\\\\frac{42}{14} = k\\\\ \boxed{k=3}

  • Периметры подобных треугольников относятся как коэффициент подобия.

Отсюда -

\frac{P(\triangle ABC)}{P(\triangle MBK)} =k\\\\\frac{P(\triangle ABC)}{32}=3\\\\{P(\triangle ABC)=32*3 = 96

Ответ :

96.

Приложения:
Похожие вопросы
Предмет: Математика, автор: Аноним
Предмет: Математика, автор: vlv394658
Предмет: Математика, автор: madamdubovicka