Предмет: Геометрия,
автор: llcoolskam
Помогите срочно, пожалуйста. Из точки М проведены к окружности с центром в точке О касательные МА и MB. Прямая l касается окружности в точке С и пересекает МА и MB соответственно в точках D и Е. Доказать, что: а) периметр треугольника MDE не зависит от выбора точки С; б) угол DOE не зависит от выбора точки С.
Ответы
Автор ответа:
1
а) Отрезки касательных, проведенных из одной точки, равны.
DA=DC, EB=EC
P(MDE)= MD+DC+ME+EC =MD+DA+ME+EB =MA+MB
Кроме того, MA=MB => P(MDE)/2 =MA=MB
б) Радиусы OA и OB перпендикулярны касательным. Сумма противоположных углов четырехугольника AOBM равна 180, ∠AOB+∠M=180. По свойству отрезков касательных из одной точки* OD - биссектриса ∠AOC, OE - биссектриса ∠BOC.
∠DOE= ∠AOC/2 +∠BOC/2 =∠AOB/2 =(180-∠M)/2
----------------------------
*△DOA=△DOC по катету (радиус) и общей гипотенузе, их соответствующие элементы равны. Аналогично △EOB=△EOC.
Приложения:
Похожие вопросы
Предмет: Физика,
автор: messor06
Предмет: Математика,
автор: hominmaria09
Предмет: Математика,
автор: gidzelickairina42
Предмет: География,
автор: grankina02
Предмет: Математика,
автор: xxxvenerkaxxx