Предмет: Геометрия,
автор: kalenov05
Найдите площадь прямоугольного треугольника в котором высота проведенная гипотенузе делит ее на отрезки равные 4,8 см 1,2 см
Ответы
Автор ответа:
31
Ответ:
7,2 см²
Объяснение:
Дано:
ΔАВС, ∠АСВ = 90°,
СН - высота,
АН = 1,2 см, ВН = 4,8 см
Найти:
S - площадь треугольника.
Решение:
АВ = АН + ВН = 1,2 + 4,8 = 6 см
В прямоугольном треугольнике квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота делит гипотенузу:
СН² = АН · ВН
СН = √(1,2 · 4,8) = √(0,1 · 3 · 4 · 0,1 · 3 · 16) = 0,1 · 3 · 2 · 4 = 2,4 см
S = 1/2 · AB · CH
S = 1/2 · 6 · 2,4 = 3 · 2,4 = 7,2 см²
Приложения:
Похожие вопросы
Предмет: Другие предметы,
автор: Di2022
Предмет: Физика,
автор: suckkwoo
Предмет: Химия,
автор: Garden72
Предмет: Математика,
автор: palin1