В цилиндрической стакан налита вода до уровня h = 10 см при темпетатуре 0 градусов. в стакан бросают аллюминевый шарик,вынутый из другого сосуда с водой,кипящей при температуре 100 градусов,при этом уровень воды повышается на 1 см,какой будет установившаяся температура в стакане?
Ответы
Ответ: 5,58 °С
Объяснение:
Дано :
h0 = 10 см = 0,1 м
t0 = 0 °C
tк = 100 °С
h = 1 см = 0,01 м
ρв = 1000 кг/м³
ρа = 2700 кг/м³
св = 4200 Дж/кг*°С
са = 920 Дж/кг*°С
-------------------------------------
t - ?
Решение :
Вначале запишем уравнение теплового баланса
свmв( t - t0 ) + cama( t - tк ) = 0
Где
mв - масса воды
ma - масса алюминия
свmв( t - t0 ) = cama( tк - t )
Теперь вспомним вот что
m = ρV
В нашем случае
mв = ρвVв
Vв = Sh0
Где
S - площадь сечения цилиндрического стакана
Тогда
mв = ρвSh0
И также уточним то что после погружения алюминиевого шарика в воду ( Т.к. ρa > ρв ) алюминиевый шарик пошел на дно , тогда объем вытесненный жидкости шариком будет равен собственному объему шарика
Из этих соображений запишем что
Va = Sh
Значит
ma = ρaSh
Теперь возвращаемся к уравнению теплового баланса
свmв( t - t0 ) = cama( tк - t )
свρвSh0( t - t0 ) = caρaSh( tк - t )
свρвh0( t - t0 ) = caρah( tк - t )
свρвh0t - свρвh0t0 = caρahtк - caρaht
t( свρвh0 + caρah ) = caρahtк + свρвh0t0
t = ( caρahtк + свρвh0t0 )/( свρвh0 + caρah )
Т.к. t0 = 0 °C тогда
t = ( caρahtк )/( свρвh0 + caρah )
t = ( 920 * 2700 * 0,01 * 100 )/( 4200 * 1000 * 0,1 + 920 * 2700 * 0,01 ) ≈ 5,58 °С