Предмет: Геометрия,
автор: Аноним
ДАЮ МАКСИМУМ БАЛЛОВ
В правильной пирамиде SABCD, все ребра которой равны 1, найдите расстояние от вершины S до прямой AB.
Пожалуйста, с "дано" и чертежом!
Аноним:
если спрашиваю, то наверное не могу)
Ответы
Автор ответа:
18
Напомню, что расстояние от точки до прямой называется перпендикуляр, опущенный из данной точки на прямую.
Рассмотрим ΔASB - равносторонний ( по условию все ребра = 1), то опустим SH ⊥ AB. По свойству равностороннего треугольника: AH = HB = 0,5.
Рассмотрим ΔSHB - прямоугольный: SB = 1; HB = 0,5. Нужно найти катет SH, то по т.Пифагора: SH = √(SB^2 - HB^2) = √3/√4 = √3/2
Ответ: √3/2
Приложения:
Похожие вопросы
Предмет: Английский язык,
автор: souldelunicorn
Предмет: Химия,
автор: nikitapopovcom41
Предмет: Русский язык,
автор: beukpetana
Предмет: Алгебра,
автор: вимкушек
Предмет: Математика,
автор: вимкушек