Предмет: Геометрия, автор: sasha14437

3. отрезки AB и MK пересекаются в точке O, которая является серединой отрезка MK,угол BMO=углу AKO. докажите что ∆MOB и KOA равны

Ответы

Автор ответа: Onywio
35

Дано: треугольники MOB и KOA

МО = ОК

углы BMO = AKO.

Доказать: треугольники MOB = KOA.


Док-во.


Т.к. отрезки АВ и МК пересекаются в точке О, то углы BMO и KOA являются вертикальными.


А т.к. по теореме вертикальные углы равны, то углы BMO = KOA.


Если МО = ОК ( по усл. ), углы BMO = AKO ( по усл. ), углы BOM = KOA, то треугольники MOB = KOA ( по 2 признаку рав-ва треуг. ).


Доказано.

Похожие вопросы