Предмет: Геометрия, автор: washington2

Даю 30 баллов
найдите площадь четырехугольника если его диагонали взаимно перпендикулярны а их длины равны 5 и 11

Решите пожалуйста на листке, если можно, и чертеж с условиями

Ответы

Автор ответа: as11111
14

S_{ABCD}=S_{AOB}+S_{BOC}+S_{AOD}+S_{COD}=\frac{1}{2}*AO*BO+\frac{1}{2}*OC*BO+\frac{1}{2}*AO*OD+\frac{1}{2}*CO*OD=\frac{1}{2}*(AO*BO+OC*BO+AO*OD+OC*OD)=\frac{1}{2}*(BO*(AO+OC)+OD(AO+OC))=\frac{1}{2}*(AO+OC)(BO+OD)=\frac{1}{2}*AC*BD=\frac{1}{2}*5*11=27.5

Приложения:

washington2: Можно, чуть проще для 8 класса?
lizavaga: проще-то некуда: просто площадь четырехугольника складывается из сумм прямоугольных треуг-ков, его составляющих. А площадь каждого прямоугольного треуг-ка равна половине произведения основания на высоту..
washington2: спасибо
washington2: https://znanija.com/task/30850089 можете решить это тоже?
lizavaga: нее, геометрия не мой сильный конек, я больше по биологии...
Похожие вопросы
Предмет: Алгебра, автор: reginkao
Предмет: Математика, автор: zauyrbekovnurislam
Предмет: Геометрия, автор: Аноним