Предмет: Геометрия, автор: minovaksyushashai

С 8 ЗАДАЧЕЙ ПОМОГИТЕ ПОЖАЛУЙСТА

Приложения:

Ответы

Автор ответа: Andr1806
2

Данная нам фигура, судя по рисунку, треугольная пирамида с вершиной в точке В. Основание пирамиды - равнобедренный треугольник DАС c боковой стороной = 6 см и основанием =4 см. Тогда его высота (медиана) равна √(36-4) = √32 см. Рассмотрим треугольник АВF. Предположим, что <BFA = 90°, то есть что отрезок ВF является высотой пирамиды. Тогда по Пифагору имеем: AF = √(36-4) = √32 см, то есть отрезок AF  является медианой и высотой основания и проекцией ребра АВ на плоскость основания. В прямоугольном (доказано выше) треугольнике  АВF косинус угла между гипотенузой АВ и катетом АF равен отношению AF/AB или Cosα=√32/6. Тогда скалярное произведение векторов АВ и AF равно |AB|·|AF|*Cosα  или

|AB|·|AF| = 6*√32*√32/6 = 32.  Ответ е).

Приложения:
Похожие вопросы
Предмет: Физика, автор: ayris2016