Предмет: Геометрия,
автор: bolli1337
95 баллов. Помогите решить 2 и 4 номер.
Приложения:
Ответы
Автор ответа:
1
2. Точка Е пересечения серединных перпендикуляров, проведенных к сторонам треугольника (см. рисунок), является центром окружности, описанной около этого треугольника. Следовательно отрезки АЕ=ВЕ=СЕ=5.
Соединим точки А и Е. АМ=МС = 4 (дано). Тогда по Пифагору из треугольника АЕМ ЕМ = √(5²-4²) = 3 ед.
4. Точка F пересечения биссектрис внутренних углов треугольника треугольника (см. рисунок) является центром окружности, вписанной в этот треугольник. Значит отрезок FK = равен 10:2 = 5. И если СК =12 (по рисунку), то по Пифагору их треугольника FKC
FC = √(12²+5²) = 13 ед.
Автор ответа:
0
2) Центром описанной окружности около треугольника является точка пересечения серединных перпендикуляров. Центр описанной окружности равноудалён от вершин данного треугольника. Следовательно, АЕ = ВЕ = СЕ = 5 - радиус описанной окружности.
Рассмотрим тр. ЕМС: по т. Пифагора
ЕМ = V( 5^2 - 4^2 ) = V( 25 - 16 ) = V9 = 3
ОТВЕТ: 3
3) Центром вписанной окружности в треугольник является точка пересечения биссектрис. Центр вписанной окружности равноудалён от сторон данного треугольника. Следовательно, FK = 10/2 = 5 - радиус вписанной окружности.
Рассмотрим тр. FKC: по т. Пифагора
FC = V( 5^2 + 12^2 ) = V( 25 + 144 ) = V169 = 13
ОТВЕТ: 13.
Похожие вопросы
Предмет: Английский язык,
автор: shepsfan
Предмет: Геометрия,
автор: princessanime422
Предмет: Другие предметы,
автор: Аноним
Предмет: Алгебра,
автор: snegarich
Предмет: Литература,
автор: Viol1234