Предмет: Математика,
автор: kkh0
двое проводят время за игрой :по очереди называют не превосходящие 100 простые числа так, чтобы последняя цифра числа ,названного одним игроком ,была равна первой цифре числа, которое следующим ходом называет второй (кроме самого первого простого числа ,названного в игре). Повторять уже названные ранее числа нельзя. Проигрывает тот,кто не может назвать по этим правилам очередное простое число .Докажите ,что один из игроков может действовать так,чтобы гарантированно обеспечить себе выигрыш, и найдите наименьшее возможное количество простых чисел,которые этот игрок назовет в такой игре. Ответ дайте в виде целого числа.
Ответы
Автор ответа:
3
Ответ:
Для отыскания решения удобно начинать рассуждения с конца.
Если один из игроков предпоследний раз назовет число 56, то какое бы число ни назвал другой игрок, он не сможет получить 66. Перед числом 56 надо назвать число 46.
Рассуждая аналогично, получаем ряд чисел: 66, 56, 46, 36, 26, 16, 6. Этих чисел семь — нечетное число, значит, победит первый игрок.
Для выигрыша он должен последовательно называть числа: 6, 16, 26, 36, 46, 56 и 66
Пошаговое объяснение:
16791679:
В математике простыми числами называют те у которых только два делителя
...единицу и самое себя
Похожие вопросы
Предмет: Русский язык,
автор: chelle6988
Предмет: Немецкий язык,
автор: porfoestedospyntos
Предмет: Русский язык,
автор: Аноним
Предмет: Информатика,
автор: smagina0410