Предмет: Математика, автор: danilameiher

В квадрат с площадью 1 вписан равносторонний треугольник так, что одна из вершин его совпадает с серединой стороны квадрата. Найти отношение площадей этих фигур.

Ответы

Автор ответа: Анусик21
0

Ответ:

Дано: квадрат АВСД і треугольник КРТ

Пошаговое объяснение:

S1 квадрата= а2

сторона квадрата а=√1=1

Так как одна из вершин треугольника лежит на половине сторона квадрата (пускай точка К), то КВ=КС=0,5 см

АВ=1 см

КР(или КА) гипотенуза треугольника (точки А і Р збигаются)=

КР=1²+ 0,5²= 1,25 см

І равностороннего треуг. равна =

S2=а²√3÷4=1,25*173/4=0,54

S1/S2=1.85


Похожие вопросы