Предмет: Геометрия, автор: vladbog1516

Катети прямокутного трикутника АВС(АВС-90*) доривнюють 6 и 8 см.Точка D виддалена от каждой вершини даного трикутника на 13 см.Знайти расстояние от точки D к площине АВС

Ответы

Автор ответа: Аноним
0

Расстояние от точки D до вершин прямоугольного треугольника одинаковое, значит, точка D проектируется на средину гипотенузы, т.к. тогда проекции этих расстояний тоже должны быть равными, а проекции - это радиусы описанной около прямоугольного треугольника окружности, которая находится на средине гипотенузы. т.к. два катета 6 см и 8см, то это египетский треугольник, его гипотенуза равна 10 см, а половина гипотенузы 10/2=5/см/, из прямоугольного треугольника  находим расстояние от точки D до плоскости треугольника АВС, т.е.

√(13²-5²)=√(169-25)=√144=12/см/

Похожие вопросы