Предмет: Алгебра,
автор: kkudlinkov
Помогите Решить систему уравнений
(2x+3)^2 = -7y
(3x+5)^2 = -7y
Ответы
Автор ответа:
1
\left \{ {{(2x+3)^{2} =-7y} \atop {(2x+5)=-7y}} \right.
Выразим y:
(2x+3)^{2} = -7y
4x^{2}+12x+9 = -7y
y = \frac{4x^{2}+12x+9}{-7}
Решим систему:
\left \{ {{(2x+3)^{2} =-7y} \atop {(2x+5)=-7y}} \right.
\left \{ {{(2x+3)^{2} =-7y | } \atop {(2x+5)=-7y | *(-1)}} \right.
\left \{ {{(2x+3)^{2} =-7y} \atop {-(2x+5)=7y}} \right.
Суммируем:
(2x+3)^{2} -(3x+5)^{2} = 0
Раскроем скобки:
(4x^{2} +12x+9) -(9x^{2}+30x+25) = 0
4x^{2} +12x+9 -9x^{2}-30x-25
-5x^{2}-18x-16 = 0 (*-1)
5x^{2}+18x+16 = 0
D = 4
\sqrt{D} = 2
x_{1} = -2 x_{-1.6}
Найдем y подставив в формулу: y = \frac{4x^{2}+12x+9}{-7}
y_{1} = \frac{4(-2)^{2}+12(-2)+9}{-7} = -\frac{1}{7}
y_{2} = \frac{4(-1.6)^{2}+12(-1.6)+9}{-7} = -\frac{1}{175}
Ответ: (-2; -\frac{1}{7}); (-1.6; -\frac{1}{175}).
Похожие вопросы
Предмет: Математика,
автор: Ayyazhan8
Предмет: Физика,
автор: 89994677494m
Предмет: Химия,
автор: tanabessonova9
Предмет: Математика,
автор: zenya23vasylenk
Предмет: Геометрия,
автор: 0DenWorld0