Предмет: Алгебра,
автор: dim10102806
Решить неравенство √(2х-1)/(х-2)<1
dim10102806:
Почему х-2≥0?
Ответы
Автор ответа:
2
√(2х-1)/(х-2)<1
одз подкоренное выражение больше равно 0
2x-1>=0 x>=0.5
заметим что левая часть отрицательна при x<2
значит одна часть решения есть [0.5, 2)
теперь решаем при x>2 левая и правая части положительны и мы можем возвести их в кавадрат, и это будет равносильно
(2x-1)/(x-2)² < 1²
(2x-1)/(x²-4x+4) - 1 < 0
( (2x-1) - (x²-4x+4)) / (x-2)² < 0 от знаменателя можно избавиться он всегда положителен и не равен 0 так как x>2
2x - 1 - x² + 4x - 4 < 0
-x² + 6x - 5 < 0
x² - 6x + 5 > 0
D=36-20=16 x12=(6+-4)/2 = 1 5
(x-1)(x-5)>0
применяем метод интервалов
+++++++++++(1) ------------------ (5) ++++++++++
x∈(-∞ 1) U (5 +∞) вспоминаем что x>2 значит x∈(5 + ∞)
объединяем с первой частью решения и получаем
Ответ x∈[0.5 2) U (5 +∞)
Похожие вопросы
Предмет: Обществознание,
автор: veronikabarakseva
Предмет: Математика,
автор: lisena1102denisovna
Предмет: Математика,
автор: keishataisija
Предмет: Информатика,
автор: darenav99
Предмет: Алгебра,
автор: анна99992