Предмет: Математика, автор: S1M0PLE

Найти площадь фигуры, ограниченной линиями
y=1/x, y=x/4, x=1
СРОЧНО

Ответы

Автор ответа: NNNLLL54
0

Точки пересечения:

\frac{1}{x}=\frac{x}{4}\; \; \to \; \; x^2=4\; ,\; \; x=\pm 2\\\\y=\frac{1}{x}\; ,\; \; x=1\; \; \to \; \; y=\frac{1}{1}=1

S=\int \limits _1^2\, (\frac{1}{x}-\frac{x}{4})\, dx=(ln|x|-\frac{x^2}{4\cdot 2})\Big |_1^2=(ln2-\frac{1}{2})-(ln1-\frac{1}{8})=\\\\=ln2-\frac{1}{2}+\frac{1}{8}=ln2-\frac{3}{8}


Приложения:
Похожие вопросы