Предмет: Математика,
автор: lerasutulaa
На дошці написані числа 1 , 2 , 3 , ...1998. За один хід дозволяється стерти будь - які два числа і замість них записати їх різницю .В результаті багаторазового виконання таких дій на дошці виявиться записаним одне число .Чи може воно бути нулем ?
Ответы
Автор ответа:
3
Допустим, что такое возможно. Выберем какие-нибудь два числа и составим их разность. Заметим, что разность двух четных чисел будет четным числом, так же как и их сумма, разность двух нечетных чисел будет являться четным числом, так же, как и сумма двух нечетных чисел, а разность четного и нечетного чисел будет числом нечетным, как и их сумма. Значит, в любой момент четность суммы ряда остается неизменной. Подсчитаем первоначальную сумму ряда. Она равна (1 + 1998)*1998/2 = 1999*999 = 1997001, то есть является числом нечетным. Значит и в момент, когда на доске останется одно число, оно должно быть нечетным, но по условию на доске остался ноль, а ноль - четное число. Следовательно, приходим к противоречию и ноль получить нельзя.
Похожие вопросы
Предмет: Русский язык,
автор: bakerkeakadil11
Предмет: Математика,
автор: Аноним
Предмет: Қазақ тiлi,
автор: titorenkoartem414
Предмет: Геометрия,
автор: ftantinzpepsia