Предмет: Математика, автор: Аноним

Назовите четырёхзначное число, у которого все цифры различны, и известно, что числа 5860, 1674, 9432, 3017 содержат ровно по две цифры, принадлежащие этому числу, однако ни одна из них не стоит в том же месте, что и в этом числе.
ПЛИЗ решение

Ответы

Автор ответа: munisa2006
10

Решение Пусть искомое число abcd. Для каждой цифры a,b,c,d посчитаем, сколько раз она встречается в данных четырех числах. Очевидно, что сумма этих вхождений должна равняться 8. Поскольку никакая цифра не встречается в 3 числах, то каждая цифра встречается ровно дважды.


Т.е. в искомом числе могут быть только цифры 0,1,3,4,6,7. Но в первом числе из этих цифр есть только 6 и 0. Значит, эти цифры в числе точно есть. Аналогично из третьего числа, получаем цифры 4 и 3. Составим табличку, в которой плюсики стоят в тех разрядах, в которых они могут быть написаны.

0 +  −  +  −

3 −  +  −  +

4 +  −  +  −

6 +  −  −  +


Очевидно, что т.к. в разряде сотен есть только один « + », то в разряде сотен числа стоит тройка. Действуя так далее и воспользовавшись тем, что четырехзначное число с нуля не начинается, получим число 4306, которое, очевидно, подходит.

Ответ  4306.

Похожие вопросы
Предмет: Алгебра, автор: sama2207
Предмет: Алгебра, автор: hromovansrdfj