Предмет: Геометрия,
автор: kopyulia27
В основании пирамиды MABCD лежит трапеция ABCD, у которой AB=BC=CD=1 и AD=2. Грани MAB и MCD перпендикулярны основанию, а двугранный угол при ребре AD равен 30 градусов. Найдите высоту пирамиды.
Ответы
Автор ответа:
0
Линия пересечения плоскостей двух боковых граней - вертикальная прямая.
Она равна высоте пирамиды.
Если через высоту и середину стороны АД провести секущую плоскость, то получим прямоугольный треугольник с углом 30 градусов, где второй катет - это высота треугольника, полученного при продолжении боковых сторон трапеции до пересечения. Она равна (корень из 3).
Тогда высота равна V3 * tg 30 = V3*1/V3 = 1.
Она равна высоте пирамиды.
Если через высоту и середину стороны АД провести секущую плоскость, то получим прямоугольный треугольник с углом 30 градусов, где второй катет - это высота треугольника, полученного при продолжении боковых сторон трапеции до пересечения. Она равна (корень из 3).
Тогда высота равна V3 * tg 30 = V3*1/V3 = 1.
Похожие вопросы
Предмет: Литература,
автор: dashutachumakova
Предмет: История,
автор: farssnik
Предмет: Биология,
автор: darya1719
Предмет: Геометрия,
автор: RBW71321
Предмет: География,
автор: киви025