Предмет: Математика,
автор: anutbabina
Найдите наименьшее натуральное число, которое является одновременно удвоенным точным квадратом и утроенным точным кубом.
Ответы
Автор ответа:
4
Чтобы "у" был натуральным числом, надо чтобы
Таким образом 2x²/3 должно раскладываться на произведение простых чисел, которые будут в кубе и наименьшими т.к. M - наименьшее, а значит и x,y - наименьшие.
2 уже есть, а "x" - натуральное, поэтому "х" должно быть произведением какого-то числа и 2 т.к. 2·2²=2³, да можно было x=2⁴, тогда 2·2⁸=2⁹, но нас интересует наименьшее. Так же нам надо избавиться от 3 в знаменателе, поэтому "х" должно быть произведением какого-то числа на 3ⁿ, при этом n - наименьшее, значит n=2 т.к. (3²)²:3=3³
Получается x=2·3² и подкоренное выражение 2³·3³, значит "у" будет натуральным.
На всякий случай проверим и найдём M.
Похожие вопросы