Предмет: Геометрия,
автор: kateshash12
В прямоугольном треугольнике из середины гипотенузы опущены перпендикуляры на катеты. Используя теорему Фалеса, докажите, что эти перпендикуляры являются средними линиями треугольника.
Ответы
Автор ответа:
0
ТреугольникАВС, уголС=90, точка К-середина АВ, АК=КВ, КН - перпендикуляр на АС, КМ-перпендикуляр на ВС, КН параллельна ВС, КМ параллельна АС
теорема Фалеса - если параллельные прямые которые пересекают стороны угла отсекают на одной его стороне равные отрезки, то они осекают равные отрезки и на другой стороне. АН=НС, КН - средняя линия треугольника АВС (соединяет середины сторон), ВМ=МС, КМ - средняя линия
теорема Фалеса - если параллельные прямые которые пересекают стороны угла отсекают на одной его стороне равные отрезки, то они осекают равные отрезки и на другой стороне. АН=НС, КН - средняя линия треугольника АВС (соединяет середины сторон), ВМ=МС, КМ - средняя линия
Автор ответа:
0
Спасибо большое!!! )
Похожие вопросы
Предмет: Математика,
автор: indiraurmanova
Предмет: Информатика,
автор: user3643378
Предмет: Физика,
автор: dianadi30052007
Предмет: Биология,
автор: Хамстеррр
Предмет: Математика,
автор: bananas77