Предмет: Алгебра,
автор: SkitZees
A) √2sin2x+4cos²(3π/8+x)=2+√2
B) Корни, принадлежащие отрезку [π;5π/2]
С подробным решением, пожалуйста)
Ответы
Автор ответа:
10
Формула
2cos²α=1+cos2α
4cos²((3π/8)+x)) = 2·(1+cos((3π/4)+2x))=2 + 2·cos((3π/4)+2x)
Формула косинуса суммы двух углов
cos(α+β)=cosαcosβ-sinαsinβ
2cos((3π/4)+2x)=2cos(3π/4)*cos2x -2sin(3π/4)*sin2x=
[cos(3π/4)= - √2/2; sin(3π/4)=√2/2]
=-√2cos2x-√2sin2x
Уравнение принимает вид:
√2sin2x+2 -√2cos2x-√2sin2x=2+√2;
cos2x= - 1
2x=(π)+2πn, n∈Z
x=(π/2)+πn, n∈Z
О т в е т. А)(π/2)+πn, n∈Z
Б)
x=(3π/2)
x=(5π/2)
Похожие вопросы
Предмет: История,
автор: ilushermorgensern
Предмет: Биология,
автор: dndjdnndns
Предмет: Математика,
автор: veronika334veronika3
Предмет: Математика,
автор: grevtcova
Предмет: Математика,
автор: Danya200311