Предмет: Геометрия,
автор: WeirdMe01ver
сторона основания правильной четырехугольной пирамиды равна a плоский угол при вершине b. найдите площадь полной поверхности.
Ответы
Автор ответа:
2
Пирамида правильная, значит в основании квадрат, а боковые грани - равные равнобедренные треугольники.
Sполн. пов. = Sосн + Sбок
Sосн = а²
Пусть SH - высота грани ASD, т.е. SH - апофема пирамиды.
Sбок = 1/2 Pосн · SH = 1/2 · 4a · SH
ΔASD равнобедренный, поэтому SH - высота, биссектриса и медиана,
АН = а/2, ∠ASH = b/2.
ΔASH: ctg(b/2) = SH / AH
SH = AH · ctg(b/2) = a/2 · ctg(b/2)
Sбок = 1/2 · 4a · SH = 2a · a/2 · ctg(b/2) = a² · ctg(b/2)
Sполн. пов. = a² + a² · ctg(b/2) = a²(1 + ctg(b/2))
Приложения:
Похожие вопросы
Предмет: История,
автор: vladtrede
Предмет: Математика,
автор: akwalor
Предмет: Английский язык,
автор: mifix0703
Предмет: Математика,
автор: asfandiyrova201
Предмет: Математика,
автор: Jilias