Предмет: Алгебра,
автор: mrshaurman
решите неравенство:
2/(х+1)-1/(х-1)<1
Ответы
Автор ответа:
2
Решение внизу на фото
Приложения:
Автор ответа:
0
2/x+1-1/x-1<1, x≠-1; x≠1
2/x+1-1/x-1-1<0
2(x-1)-(x+1)*(x-1)/(x+1)*(x-1)<0
2x-2-x-1-(x²-1)/(x+1)*(x-1)<0
2x-2-x-1-x²+1/(x+1)*(x-1)<0
x-2-x²(x+1)*(x-1)<0
{x-2-x²<0
{(x+1)*(x-1)>0
{x-2-x²>0
{(x+1)*(x-1)<0
}x∈R
}x∈[-∞, -1] ∪ [1, +∞]
}x∈∅
x∈[-1, 1
x∈ [-∞, -1) ∪ [ 1, +∞] x≠-1, x≠1
2/x+1-1/x-1-1<0
2(x-1)-(x+1)*(x-1)/(x+1)*(x-1)<0
2x-2-x-1-(x²-1)/(x+1)*(x-1)<0
2x-2-x-1-x²+1/(x+1)*(x-1)<0
x-2-x²(x+1)*(x-1)<0
{x-2-x²<0
{(x+1)*(x-1)>0
{x-2-x²>0
{(x+1)*(x-1)<0
}x∈R
}x∈[-∞, -1] ∪ [1, +∞]
}x∈∅
x∈[-1, 1
x∈ [-∞, -1) ∪ [ 1, +∞] x≠-1, x≠1
Похожие вопросы
Предмет: Литература,
автор: zakirova208samira
Предмет: Алгебра,
автор: zhansulu02121968
Предмет: Русский язык,
автор: galeevadil0490
Предмет: История,
автор: Belousovakatushka