Предмет: Алгебра,
автор: mansnisi829292
Докажите если a>0 и b>0 то a2+b2+1>=ab+a+b
Ответы
Автор ответа:
1
Умножим всё неравенство на 2:
2a² + 2b² + 1 ≥ 2ab + 2a + 2b
Перенесём всё в левую сторону:
2a² + 2b² + 1 - 2ab - 2a - 2b ≥ 0
Теперь выделим три полных квадрата:
(a² - 2ab + b²) + (a² - 2a + 1) + (b² - 2b + 1) ≥ 0
(a - b)² + (a - 1)² + (b - 1)² ≥ 0
Данное неравенство верно при любых a и b, т.к. сумма квадратов - есть число неотрицательное, значит, условие a > 0 и b > 0 необязательное.
2a² + 2b² + 1 ≥ 2ab + 2a + 2b
Перенесём всё в левую сторону:
2a² + 2b² + 1 - 2ab - 2a - 2b ≥ 0
Теперь выделим три полных квадрата:
(a² - 2ab + b²) + (a² - 2a + 1) + (b² - 2b + 1) ≥ 0
(a - b)² + (a - 1)² + (b - 1)² ≥ 0
Данное неравенство верно при любых a и b, т.к. сумма квадратов - есть число неотрицательное, значит, условие a > 0 и b > 0 необязательное.
Похожие вопросы
Предмет: Математика,
автор: susanyanash
Предмет: Информатика,
автор: kolisnykjulia0307
Предмет: Математика,
автор: anastasia1541
Предмет: Геометрия,
автор: ggnoobs
Предмет: Алгебра,
автор: Veronichka58