Предмет: Математика, автор: mrshaurman

((a^2-bc)/((a-b)(a-c)))+((b^2+ac)/((b+c)(b-a)))+((c^2+ab)/((c-a)(c+b))) упростить

Ответы

Автор ответа: snow99
0

 \frac{ {a}^{2} - bc }{(a - b)(a - c)}  +  \frac{ {b}^{2}  + ac}{(b + c)(b - a)}  +  \frac{ {c}^{2} + ab }{(c - a)(c + b)}  =  \frac{ {a}^{2} - bc }{(a - b)(a - c)}   -  \frac{ {b}^{2}   + ac}{(b + c)(a - b)}  -  \frac{ {c}^{2} + ab }{(a - c)(b + c)}  =   \frac{( {a}^{2} - bc)(b + c) - ( {b}^{2} + ac)(a - c)  }{(a - b)(a - c)(b + c)}  -  \frac{ {c}^{2}  + ab}{(a - c)(b + c)}  =  \frac{ {a}^{2} b -  {b}^{2} c +  {a}^{2}c - b {c}^{2}  -  {b}^{2} a  -   {a}^{2}c +  {b}^{2} c + a {c}^{2}   }{(a - b)(a - c)(b + c)}  -   \frac{ {c}^{2}  + ab}{(a - c)(b + c)}  =  \frac{ {a}^{2} b -  b{c}^{2}  -  {b}^{2}a + a {c}^{2}  }{(a - b)(a - c)(b + c)}  -  \frac{ {c}^{2}  + ab}{(a - c)(b + c)}  =  \frac{ab(a - b) +  {c}^{2}(a - b) }{(a - b)(a - c)(b + c)}  -   \frac{ {c}^{2}  + ab}{(a - c)(b + c)}  =  \frac{(a - b)(ab +  {c}^{2}) }{(a - b)(a - c)(b + c)}  -   \frac{ {c}^{2} + ab }{(a - c)(b + c)}  =  \frac{ab +  {c}^{2} }{(a - c)(b + c)}  -  \frac{ {c}^{2}  + ab}{(a - c)(b + c)}  = 0
Похожие вопросы
Предмет: Биология, автор: Tundratundra